Computation of point sets on the sphere with good separation, covering or polarization

Rob Womersley, r.womersley@unsw.edu.au School of Mathematics and Statistics, University of New South Wales

Good sets of 400 points for packing, covering \mathbb{S}^{2}

Outline

(1) Spheres and point sets

- Spheres and point sets
- Separation/Packing
- Covering/Mesh norm
- Riesz s-energy
- Polarization
- Parametrizations

2 Best packing
(3) Best covering
(4) Best polarization

Unit sphere

Unit sphere

$$
\mathbb{S}^{d}=\left\{\boldsymbol{x} \in \mathbb{R}^{d+1}:|\boldsymbol{x}|=1\right\}
$$

- Sets of distinct points $\mathcal{X}_{N}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\} \subset \mathbb{S}^{d}$
- $\boldsymbol{x} \cdot \boldsymbol{y}=\sum_{i=1}^{d+1} x_{i} y_{i}, \quad|\boldsymbol{x}|^{2}=\boldsymbol{x} \cdot \boldsymbol{x}$
- Distance: : $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{S}^{d}$
- Euclidean distance $|\boldsymbol{x}-\boldsymbol{y}|^{2}=2(1-\boldsymbol{x} \cdot \boldsymbol{y})$
- Geodesic distance: $\operatorname{dist}(\boldsymbol{x}, \boldsymbol{y})=\arccos (\boldsymbol{x} \cdot \boldsymbol{y})$
- $|\boldsymbol{x}-\boldsymbol{y}|=2 \sin (\operatorname{dist}(\boldsymbol{x}, \boldsymbol{y}) / 2)$
- Spherical cap centre $\boldsymbol{z} \in \mathbb{S}^{d}$, radius α

$$
\mathcal{C}(\boldsymbol{z} ; \alpha)=\left\{\boldsymbol{x} \in \mathbb{S}^{d}: \operatorname{dist}(\boldsymbol{x}, \boldsymbol{z}) \leq \alpha\right\}
$$

Packing/Separation

- Separation: $\delta\left(\mathcal{X}_{N}\right):=\min _{i \neq j} \operatorname{dist}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$
- Packing radius $=\delta\left(\mathcal{X}_{N}\right) / 2$
- Best packing: $\delta_{N}:=\max _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} \delta\left(\mathcal{X}_{N}\right) \sim c_{d}^{\text {sep }} N^{-1 / d}$

PK points, $\mathrm{N}=400$, packing radius $=0.0924$

Mesh norm/Covering radius/Fill radius

- Covering radius: $\quad h\left(\mathcal{X}_{N}\right):=\max _{\boldsymbol{x} \in \mathbb{S}^{d}} \min _{j=1, \ldots, N} \operatorname{dist}\left(\boldsymbol{x}, \boldsymbol{x}_{j}\right)$
- Mesh ratio: $\quad \rho\left(\mathcal{X}_{N}\right):=\frac{2 h\left(\mathcal{X}_{N}\right)}{\delta\left(\mathcal{X}_{N}\right)} \geq 1$
- Best covering: $h_{N}:=\min _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} h\left(\mathcal{X}_{N}\right) \sim c_{d}^{\text {cov }} N^{-1 / d}$

$$
\text { CV points, } \mathrm{N}=400 \text {, covering radius }=0.1115
$$

Riesz energy and sums of distances

$$
\begin{gathered}
E\left(s ; \mathcal{X}_{N}\right)= \begin{cases}\sum_{i=1}^{N} \sum_{\substack{j=1 \\
j \neq i}}^{N} \frac{1}{\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right|^{s}} & \text { if } s \neq 0 ; \\
\sum_{i=1}^{N} \sum_{\substack{j=1 \\
j \neq i}}^{N} \log \frac{1}{\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right|}, & \text { if } s=0 .\end{cases} \\
\mathcal{E}_{s, N}= \begin{cases}\min _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} E\left(s ; \mathcal{X}_{N}\right) & s>0 ; \\
\max _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} E\left(s ; \mathcal{X}_{N}\right) & s \leq 0 .\end{cases}
\end{gathered}
$$

- Asymptotics $(N \rightarrow \infty)$ for $s=0(\mathrm{Log}), 0<s<d, s=d, s>d$
- $s>d$ uniformly distributed
- As $s \rightarrow \infty$ get best packing (separation)
- Borodachov, Hardin \& Saff monograph

Polarization

- Function

$$
U_{s}\left(\boldsymbol{x}, \mathcal{X}_{N}\right):=\operatorname{sign}(s) \sum_{j=1}^{N} \frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}_{j}\right|^{s}}
$$

- Polarization

$$
U_{s}^{*}\left(\mathcal{X}_{N}\right)=\min _{\boldsymbol{x} \in \mathbb{S}^{d}} U_{s}\left(\boldsymbol{x}, \mathcal{X}_{N}\right)
$$

- Optimal set of N points \mathcal{X}_{N}^{*} satisfy

$$
M_{s, N}:=\max _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} U_{s}^{*}\left(\mathcal{X}_{N}\right)=\max _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} \min _{\boldsymbol{x} \in \mathbb{S}^{d}} U_{s}\left(\boldsymbol{x}, \mathcal{X}_{N}\right)
$$

- $M_{s, N} \geq \frac{\mathcal{E}_{s, N}}{N-1}$
- As $s \rightarrow \infty$ get best covering
- Erdélyi and Saff (2013), ..., Borodachov, Hardin \& Saff monograph

Polarization $\mathrm{N}=12, \mathrm{~d}=2, \mathrm{~s}=3$

Parametrizations

- Criteria invariant under
- rotation of point set
- permutation of points
- Criteria depend only on
- distance/angle/inner product between points, or
- distance/angle/inner product with another point on \mathbb{S}^{d}
- Aim: always feasible $\mathcal{X}_{N} \subset \mathbb{S}^{d}$
- Spherical parametrization
- For \mathbb{S}^{2} : polar angle $\theta \in[0, \pi]$, azimuthal angle $\phi \in[0,2 \pi)$
- Derivative discontinuities at poles
- Rotation to fix
- first point at north pole $(\theta=0)$
- second point on prime meridian ($\phi=0$)
- Issues if using gradient differences to estimate second order information
- Minimax \Longrightarrow derivative discontinuities/generalized gradients
- eg. $|x|=\max (x,-x)=\min v$ s.t. $v \geq x, v \geq-x$

Inner products

- Matrix of distinct points $X=\left[\boldsymbol{x}_{1} \cdots \boldsymbol{x}_{N}\right] \in \mathbb{R}^{d+1 \times N}$
- Set $\mathcal{A}\left(\mathcal{X}_{N}\right)=\left\{z=\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j} \in[-1,1), j>i\right\}, \quad\left|\mathcal{A}\left(\mathcal{X}_{N}\right)\right| \leq \frac{N(N-1)}{2}$
- Best packing: $\min _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} \max _{i \neq j} \boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}$
- Matrix of inner products $Z=X^{T} X \in \mathbb{R}^{N \times N}$
- Z is symmetric, positive semi-definite $X \succeq 0 \Longrightarrow$ SDP
- $\operatorname{diag}(Z)=\boldsymbol{e}$ where $\boldsymbol{e}=(1, \ldots, 1)^{T} \in \mathbb{R}^{d+1}$
- $\operatorname{rank}(Z)=d+1 \Longrightarrow$ fixed (low) rank correlation matrix

Best packing

- Best packing

$$
\min _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} \max _{i \neq j} \boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}
$$

- Finite minimax problem: convert to

$$
\begin{aligned}
& \text { Minimize } \quad v \\
& \mathcal{X}_{N} \subset \mathbb{S}^{d} \\
& \text { Subject to } \quad v \geq \boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}, \quad 1 \leq i<j \leq N
\end{aligned}
$$

- Number of variables $n=N d-\frac{d(d+1)}{2}$
- Vertex solution/strongly unique local minimum
- $n+1$ active constraints/inner products achieving max
- Positive Lagrange multipliers for active constraints/0 in interior of generalized gradient
- Fewer active constraints \Longrightarrow curvature critical
- More active constraints \Longrightarrow degeneracy

Largest inner products

- PK points on $\mathbb{S}^{2}, N=400$, Number of variables $n=797$
- Number active inner products: $\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}>v-\epsilon$
$\epsilon=10^{-15} \Longrightarrow 792, \epsilon=10^{-6} \Longrightarrow 798, \epsilon=10^{-5} \Longrightarrow 801$

Nearest neighbour distances

- PK points on $\mathbb{S}^{2}, N=400$

Distance to $\mathbf{3 6}$ nearest neighbours for $\mathbf{4 0 0}$ PK points on $\mathrm{S}^{\mathbf{2}}$

Good separation for $N=4, \ldots, 1050$

- PK points: Good packing
- ME points: Low Riesz $s=1$ (Coulomb) energy (Kuïlaars, Saff, Sun, 2007)
- CV points: Good covering

Best covering

- Best covering

$$
\max _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} \min _{\boldsymbol{x} \in \mathbb{S}^{d}} \max _{j=1, \ldots, N} \boldsymbol{x} \cdot \boldsymbol{x}_{j}
$$

- Continuous maximin problem: convert to finite problem
- Facets $\mathcal{F}\left(\mathcal{X}_{N}\right)$ of convex hull of \mathcal{X}_{N}
- Facet $F \in \mathcal{F}\left(\mathcal{X}_{N}\right) \Longrightarrow$ set of $d+1$ elements of $\{1, \ldots, N\}$
- $2 N-4$ Delaunay triangles for $\mathcal{X}_{N} \subset \mathbb{S}^{2}$
- Circumcentres $\boldsymbol{c}(F)$ of facet $F \in \mathcal{F}\left(\mathcal{X}_{N}\right)$
- $\boldsymbol{c}(F)$ equidistant from $d+1$ vertices determining facet F
- Solve $B \boldsymbol{u}=\boldsymbol{e}, \quad B=\left[\boldsymbol{x}_{i}^{T}, i \in F\right], \quad \boldsymbol{e}=(1, \ldots, 1)^{T} \in \mathbb{R}^{d+1}$
- $\Longrightarrow z(F)=1 /\|\boldsymbol{u}\|_{2}, \quad \boldsymbol{c}(F)=z(F) \boldsymbol{u}$
- Best covering: Finite maximin problem

$$
\max _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} \min _{F \in \mathcal{F}\left(\mathcal{X}_{\mathcal{N}}\right)} z(F)
$$

- where $z(F)=\boldsymbol{c}(F) \cdot \boldsymbol{x}_{j}$ for each $j \in F$
- small changes in \mathcal{X}_{N} can change set of facets $\mathcal{F}\left(\mathcal{X}_{\mathcal{N}}\right)$ (eg. square)

Circumcentres

- CV points on $\mathbb{S}^{2}, N=400$
- $2 N-4=796$ facets F (Delaunay triangles)
- 604 facets within 10^{-6} of minimum inner product

CV points, $N=400,796$ Delaunay triangles, circumcentres

Good Covering for $N=4, \ldots, 1050$

- PK points: Good packing
- ME points: Low Riesz $s=1$ (Coulomb) energy (Damelin, Maymeskul, 2005)
- CV points: Good covering

Consistency checks

- Separation/Packing
- If you remove one of the points achieving the minimum separation, the separation cannot get worse
- $\delta_{N-1} \geq \delta_{N}$
- Covering/Mesh norm
- If you add a point at the circumcentre of one of the facets achieving the maximum distance (deep hole) then covering radius cannot get worse
- $h_{N+1} \leq h_{N}$
- Only (good) local optima; no guarantee of global optimality
- Try a variety of starting point sets
- Try starting from a point set obtained by deleting/adding a point
- Try starting from local perturbations of a point set
- Points sets with special structure (symmetry) hard to find
- ...

Best polarization

- Optimal polarization, parameter $s>0$

$$
\max _{\mathcal{X}_{N} \subset \mathbb{S}^{d}} \min _{\boldsymbol{x} \in \mathbb{S}^{d}} \sum_{j=1}^{N} \frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}_{j}\right|^{s}}
$$

- Continuous maximin problem: convert to finite problem
- Find all local minimizers \boldsymbol{x} achieving (close to) global minimum

$$
U_{s}^{*}\left(\mathcal{X}_{N}\right) \text { of } U_{s}\left(\boldsymbol{x}, \mathcal{X}_{N}\right):=\sum_{j=1}^{N} \frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}_{j}\right|^{s}}
$$

- Assumption: Local minimizers achieving global minimum satisfy second order sufficient conditions, so are isolated
- Finite set $\mathcal{M}_{s}\left(\mathcal{X}_{N}\right)=\left\{\boldsymbol{x}^{*} \in \mathbb{S}^{d}: U_{s}\left(\boldsymbol{x}^{*}, \mathcal{X}_{N}\right)=U_{s}^{*}\left(\mathcal{X}_{N}\right)\right\}$
- Finite maximin problem

$$
\begin{array}{ll}
\text { Maximize } & v \\
\mathcal{X}_{N} \subset \mathbb{S}^{d} \\
\text { Subject to } & v \leq U_{s}\left(\boldsymbol{x}^{*}, \mathcal{X}_{N}\right) \quad \text { for } \boldsymbol{x}^{*} \in \mathcal{M}_{s}\left(\mathcal{X}_{N}\right)
\end{array}
$$

PE points, local minima

- PE points: Good polarization, $N=400$

PE points, $N=400,796$ Delaunay triangles, circumcentres

PE points, active local minima

- PE points: Good polarization, $N=400$

Good polarization $s=1, N=4, \ldots, 500$

Polarization $M_{N^{\prime}}^{5}$ Energy $E_{N}^{s} /(N-1)$ for max polarization points on $S^{d}, d=2, s=1$,

Coefficient of second term for max polarization points on S^{d} for $d=2, s=1$

Good polarization for increasing s

Acknowledgements

- ICERM
- National Computational Infrastructure (NCI), supported by the Australian Government.
- Linux computational cluster Katana supported by the Faculty of Science, UNSW Sydney.

Thank You

